
Strategies to enhance productivity and modify product
quality in therapeutic proteins
Devesh Radhakrishnan1, Evan A Wells2 and
Anne Skaja Robinson2

Available online at www.sciencedirect.com

ScienceDirect
The production of commercially valuable biotherapeutic

molecules in mammalian systems has expanded significantly in

the last thirty years, but growing economic pressures within the

industry are driving efforts to reduce costs and enhance

process yields. At the upstream stage, two complementary

approaches have evolved to increase productivity and maintain

consistent product quality, that is either by altering the cell

directly or by manipulating its environment. This review focuses

on novel approaches to impact productivity and product quality

by manipulating the environment through: (a) altering media

composition; (b) modulating operating conditions such as pH

and temperature; or (c) intensifying process operations by

switching from fed-batch to continuous processes.
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Introduction
The biotechnology industry, a key driver for economic

development, has undergone rapid growth since the

commercialization of the first recombinant DNA product

over 35 years ago [1]. Global sales for biotherapeutics

exceeded $200 billion in 2016 [2] and are expected to

account for a quarter of the projected $1.4 trillion global

spending on medicines by 2020 [3]. As the industry

matures, companies face increasing economic pressures

stemming from expiring patents, competition from bio-

similars, tighter regulations, and decreasing returns on

research investments for drug development [4]. Thus,

there is a growing need within the biopharmaceutical

sector to innovate and improve productivity at each stage
www.sciencedirect.com 
in the biopharmaceutical process—from increasing pro-

tein expression at the upstream stage, to debottlenecking

purification trains and identifying innovative and modular

solutions for manufacturing using single use technologies.

At the upstream stage, increasing the production of such

complex biotherapeutic molecules comes with the asso-

ciated challenge of maintaining consistent product qual-

ity, thereby ensuring the safety and efficacy of the drug

product. The different techniques that have been used to

enhance productivity and achieve consistent product

quality can be broadly classified into two complementary

tactics (Figure 1):

1 Microscale strategies—broadly, these strategies refer to

manipulations that are performed at the cellular and

subcellular level to identify bottlenecks to protein

folding and secretion [5] and/or techniques to alter

the final quality profile of the expressed protein [6].

2 Macroscale approaches—when cell line modifications

are infeasible, a complementary approach to increase

productivity and influence product quality uses factors

available at the macroscopic scale by: (a) manipulating

media compositions and formulating defined media via

media additives and supplements; (b) using optimal

process and operating conditions; or (c) altering the

mode of operation by switching to perfusion or contin-

uous production.

A detailed discussion of different microscopic approaches

using cellular engineering to alter product quality and

productivity can be found in other reviews [for e.g. see

Refs. [6,7]]. Herein, we limit the scope of the current

review to focus on macroscopic approaches to achieve

higher titers and consistent product quality by manipu-

lating process and operating conditions.

Media supplements
The advancement of process analytical tools has facilitated

a comprehensive analysis of cell culture media and led to

the identification of individual components that influence

both the productivity and quality of different proteins

expressed in mammalian cells (Table 1). For instance,

productivity markers were identified in soy hydrolysate

using LC–MS/MS and metabolomics, and mechanistic

underpinnings for batch-to-batch variations in the process

were then established from these insights [8]. Similarly,

using NMR and 2D-DIGE, Blondeel et al. [9�]
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Figure 1
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Complementary approaches to modulating productivity and product quality in biomanufacturing. At the molecular level, cell line engineering can

be performed to enhance cellular productivity and obtain a consistent or desired quality profile. Alternatively, manipulations at the macroscopic

scale, such as changes to the media formulation, shifting process operating conditions, and employing different modes of operation can be

utilized to improve productivity and alter product quality for proteins expressed in a specific cell line.
characterized cellular factors limiting growth and produc-

tivity and designed rational feeds to enhance productiv-

ities and increase cell densities by nearly 75%. By exam-

ining different amino acid supplements present in

commercially available chemically defined (CD) cell cul-

ture media, feed and supplementation strategies have

been successfully implemented to increase product titers

in fed-batch conditions by minimizing lactate and ammo-

nia accumulation [10,11]. The identification and optimi-

zation of media components have also led to strategies

wherein media additives have been used to enhance titer.

For instance, nucleoside sugars deoxyuridine and thymi-

dine significantly increased the peak viable cell concen-

tration, and consequently antibody titer, when supple-

mented singly into antibody-producing CHO cultures

[12]. Supplementing with deoxyuridine, thymidine, and

deoxycytidine together further improved final titers by

17% over cultures treated solely with deoxyuridine [12].

Although these individual approaches are promising and

straightforward to test for any protein of interest, the
Current Opinion in Chemical Engineering 2018, 22:81–88 
successful implementation can vary in a product and/or

process-specific manner, likely in part due to cell line

instability and heterogeneity.

A detailed understanding of the effect of different media

additives has also resulted in a new set of strategies to

modulate product quality attributes. In one instance,

researchers observed an increase in tryptophan oxidation

in two biopharmaceutical products following a switch

from hydrolysate containing media to chemically defined

(CD) media [13]. By comparing the individual compo-

nents of the two media types, they identified and modu-

lated the concentrations of the amino acids, tryptophan

and cysteine, and metal ions, copper and manganese to

reduce tryptophan oxidation. Vijayasankaran et al. [14]

have demonstrated that the addition of different media

supplements such as hypotaurine, cystine, peptones, and

hydrocortisone could be used to reduce coloration and

alter the acidic charge variant levels in fed-batch cultures.

Similarly, researchers have demonstrated that basic
www.sciencedirect.com
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Table 1

Effect of media and feed supplements on productivity and product quality

Media and feed

components added

Titer

effects

Growth

effects

Glycan effects Key conclusions

Sugars:

Raffinose (1–50 mM) 0 0 " Mannosylation High mannose N-glycans (M5, M6) [16�,17], downregulated

galactosyltransferase, upregulated sialyltransferase, improved antibody

ADCC [17] No significant growth/titer changes

‘Infrequently used’

sugars (1–50 mM)

0 0 " Galactosylation Increases G1F and G2F glycosylation without having major effects on overall

culture titer or growth [16�]
Glucosamine (6.5–

7.7 mM)

" " " Sialic acid

Predicted optimum concentrations via statistical modeling. Optimal

conditions improved growth and productivity. Increased sialic acid content in

albumin-erythropoietin (25.8–33.5%) [19]

Galactose (12.6–

15.0 mM)

N-acetylmannosamine

(10.2–10.5 mM)

1,3,4-O-Bu3ManNAc

(200–300 mM)

NDz 0 " Sialic acid >40% Increase in sialic acid content in erythropoietin; more potent analog of

N-acetylmannosamine [18]

Deoxyuridine (10–

200 mg/L)

" " NDz 38–75% increased peak viable cell concentration (VCC) and 37–67%

increase in titer between different CHO lines [12]

Thymidine (25 mg/L) " " NDz 28% increased peak VCC and 33% increase in titer; increased peak VCC and

titer when combined with deoxyuridine and deoxycytidine [12]

Growth factors:

LongR3 (IGF-1 analog)

(0–200 mg/L)

" " " Sialic acid Increased sialic acid content, VCC and titer, downregulated cytosolic

sialidase Neu2 and decreased extracellular sialidase activity [22�]

Metals:

Manganese (Mn2+) (0.01–

2 mM) " 0 " Galactosylation

Decreased G0F glycans and concomitant increase in G1F/G2F glycans (up

to 20% with just Mn2+ and 25% when co-supplemented with Gal) [20�]
Time-dependent addition altered glycan distribution. Slight increases in titer

and no significant effect on VCC when only Mn2+ supplemented at D0 [21]

Zinc (Zn2+) (30–200 mM) 0 # # Galactosylation Dose-dependent reduction in cell growth and galactosylation above 100

mM. Mn2+ supplementation recovers the galactosylation [20�]
Iron (10–110 mM) " " 0 VCC increased linearly by 26% from low to high iron. Increase in titer by 37%

in highest iron condition and 10% increase in specific productivity. Also

increased charge variants in short and long-term culture, coloration, and

tryptophan oxidation [15]

Amino acids and derivatives:
Citrulline (30 mM) " " NDz

Significant increases in cell growth between two mAb-producing cell lines,

likely resulting from an increase in intracellular polyamine concentration [8]Ornithine (90–760 mM) " " NDz

Proline, serine, cystine,

asparagine, glucose,

glutamine,

hypoxanthine, and

choline (17–100%

increase relative to

concentration in media)

NDz " NDz These 8 metabolites were assembled into a nutrient cocktail which improved

cell densities by 75% [9�]

Cysteine (1.8 mM)

" # NDz When used in combination, mAb titer increased by 60% [10]Tyrosine (14.5 mM)

Serine (50 mM)

Tryptophan (pre-CD

media concentration)

0 0 NDz Supplementation with Trp lowered Trp oxidation by 27% [13]

Hypotaurine (13 mM) 0 " NDz Lowered normalized intrinsic fluorescence by 10–20%, total color by

1.8 units, and acidic charge variants by 8% [14]

0, No change; ", increase, #, decrease.

NDz Indicates factor not discussed.
variants can also be reduced by appropriately modifying

cell culture media [15].

One of the most exciting developments in the use of

media additives has been in modulating critical product

quality attributes such as glycosylation. Supplementation

with glucose and galactose are well-known strategies to
www.sciencedirect.com 
impact glycan profiles; however, less conventional sugars

can also affect glycosylation without significantly impact-

ing culture performance. Hossler et al. [16�] reported

testing nine ‘non-conventional’ sugars, consisting of

mono-saccharides, di-saccharides, and tri-saccharides,

and found eight of them increased G1F and G2F N-
glycan species, while having nominal or slightly
Current Opinion in Chemical Engineering 2018, 22:81–88
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decreased effects on the final culture growth and titer.

The authors believe the observed glycosylation shifts

resulted from interactions with glycosyltransferases or

cell signaling machinery; this explanation is a departure

from conventional nucleotide sugar supplementation like

galactose that alters glycan profiles directly as a substrate

for galactosyltransferases. Bruhlmann et al. [17] observed

similar results where another nonconventional sugar,

raffinose, was hypothesized to inhibit GlcNAc transfer-

ase, resulting in the presence of high mannose glycans on

IgG. Chemical precursors and analogs of nucleotide

sugars have also recently shown promise for tuning prod-

uct quality attributes. Betenbaugh et al. [18] used 1,3,4-O-
Bu3ManNAc, a ManNAc analog, to increase the sialic acid

content of erythropoietin (EPO) by 40%. When compared

head to head with ManNAc, the analog caused more

potent effects at 100-fold lower concentrations and dis-

played fewer off-target effects. Kim et al. [19] also

increased sialylation of recombinant albumin-EPO by

using a response surface statistical method to identify

the optimal concentrations of three supplements,

GlcNAc, Gal, and ManNAc.

The addition of metals has been shown to alter antibody

galactosylation levels. Zinc chloride (ZnCl2) contrasts the

well-known media additive manganese chloride by low-

ering overall galactosylation in a dose-dependent manner

[20�]. Prabhu et al. [20�] demonstrated that Mn2+ supple-

mentation could reverse and overcome the galactosyla-

tion-altering effects of zinc and possibly other trace metal

ions present due to variations in media formulation

between lots. One potential advantage of using metals

as media additives to modify glycan distribution is that

they can be altered dynamically by the introduction of

chelating agents, or by using a time-dependent media

supplementation strategy [21]. Recombinant growth fac-

tors can also improve the health and product quality of

cells; LongR3 is an insulin-like growth factor that

improved sialic acid content and culture viability, and

downregulated expression of sialidases in IgG-producing

CHO lines [22�]. Integrating both experimental and

modeling approaches for optimizing the addition of one

of more supplements will also contribute to more finely

tuned product quality control.

Process operating conditions
Manipulating process operating conditions such as pH

and temperature to influence productivity and product

quality is a widely used, but not very well understood

approach. Hence, researchers are directing their efforts to

understand the underlying mechanistic basis for

enhanced productivity or altered quality following pH

and temperature modulations. For instance, Bedoya-

López et al. [23] applied next generation sequencing

(NGS) to analyze the transcriptomic response in CHO

cells under conditions of mild hypothermia and observed

differential expression of transcripts that were
Current Opinion in Chemical Engineering 2018, 22:81–88 
responsible for avoiding apoptotic cell death and main-

taining cellular metabolism, noting that hypothermic

conditions extended culture life and increased expression

of the protein of interest. Similarly, a direct correlation

was established between the upregulation of the tran-

scriptional regulatory factors myc and xbp1s and hypother-

mia, resulting in increased viability and productivity

during TNFa production [24].

Modulating culture temperature can also have significant

impacts on product quality. Temperature shift when

coupled with media changes, such as the addition of

hydrolysate, can be used to regulate and modify charge

heterogeneity. Protein aggregation is also affected by a

temperature downshift, as was demonstrated by Paul

et al. [25] who performed a detailed experimental design

to assess the effect of culture conditions on aggregation.

Their study noted that in addition to temperature, osmo-

lality, agitation rates, and antifoam addition were critical

to control protein aggregation in the bioreactor. Another

product quality attribute that is affected by mild hypo-

thermia is glycosylation, as researchers have demon-

strated that temperature shift can result in the formation

of underprocessed glycan species, by decreasing the

availability of intracellular nucleotide sugar donor

(NSD) pools [26]. Predictive mathematical models of

CHO cell growth, metabolism, antibody synthesis and

glycosylation have shown that mild hypothermia results

in reduced activity in galactosyltransferase enzyme activ-

ity and a change in intracellular NSD pools, resulting in

altered glycan distribution profiles [27]. Such a detailed

understanding of process conditions can lead to better

feeding strategies or cell engineering strategies to achieve

comparable glycan distributions under hypothermic

conditions.

pH, like temperature, can have a significant impact on cell

growth rate, cell density, specific glucose consumption

rate and lactate production rate, protein productivity, and

quality. This observation has led to efforts to maximize

productivity by inducing appropriate pH shifts during

different phases of cell growth. Zheng et al. [28] observed

that antibody production increased, and biological effi-

cacy was significantly enhanced due to changes in glyco-

sylation profiles in pH-shifted perfusion cultures as com-

pared to control cultures. The changes in the glycan

profile and subsequent changes in biological efficacy

occurred due to the effect of culture pH on the glycosyl-

transferase enzyme activity. In addition to such experi-

mental observations, model-based approaches have also

been developed to fine tune the pH-shift schedule and

increase productivity [29]. Further, there is evidence

indicating that process conditions in the seed train can

have an influence on protein productivity at the produc-

tion scale. Tung et al. [30�] demonstrated that low seed

train pH for a specific antibody-producing cell line corre-

lated with an increase in the levels of immunoglobulin
www.sciencedirect.com
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Figure 2
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Three different modes of operation in biomanufacturing are (a) batch—where cells and media are added at the start and the harvest is collected at

the end of the batch run; (b) fed-batch—where cells and media are added to the bioreactor at the beginning of the run, with intermittent media

additions at specific schedules; and (c) perfusion—where there is a continuous feed addition and cell and harvest removal, with the cells being

captured in the cell retention device and then returned to the bioreactor.
binding protein (BiP), indicating an increase in cellular

stress and activation of the unfolded protein response

(UPR) in the cells. Although their findings indicated that

the pH-triggered increase in BiP levels was specific to

their antibody-producing cell line, it is worth noting that

macroscopic factors in the seed train can have significant

effects on overall protein yields during subsequent pro-

duction runs.

Such attempts to generate a mechanistic understanding of

the cellular and subcellular changes accompanying pro-

cess changes will lead to more effective implementation

of conventionally used strategies such as temperature and

pH shifts for improving productivities.

Mode of operation
Fed-batch processes for manufacturing therapeutic pro-

teins are very well established and have been popular due

to their ease of operation, scalability, and process robust-

ness. However, an inherent limitation with fed-batch

cultures is that nutrient depletion and by-product accu-

mulation towards the end of the culture may inhibit cell

growth or limit productivity. Hence there is growing

interest in evaluating continuous process operations such

as perfusion, where constant addition of fresh media can

be used to replenish nutrients and dilute inhibitory by-

products, while continuous harvest and cell recirculation

ensures that the product is harvested as soon as it is

formed. Figure 2 depicts the differences between batch,

fed-batch, and perfusion modes of operation.
www.sciencedirect.com 
Traditionally perfusion processes have been employed

for products that are labile or are unstable in batch and

fed-batch cultures due to the longer residence times

associated with these processes. Researchers have now

begun evaluating perfusion systems for production of

conventional therapeutic products either in lieu of or in

conjunction with fed-batch systems. For instance, Yang

et al. [31] showed that implementing perfusion in seed

train operations followed by fed-batch production cul-

tures resulted in an increase in volumetric productivity for

three different CHO cell lines. Hiller et al. [32] evaluated

a hybrid fed-batch and perfusion process wherein five

different mAb producing CHO cell lines were grown

under perfusion conditions for four days, and then

switched over to fed-batch operations. Using a variation

of a previously established technique, they developed a

control strategy to activate media feed pumps and harvest

removal pumps when the bulk pH in the bioreactor

increased following the consumption of lactic acid under

glucose limiting conditions. The bioreactors operated

using this hybrid perfusion/fed-batch process demon-

strated significantly higher titers and improved produc-

tivity as compared to the optimized fed-batch process,

without altering either the product quality or the run

duration. Other researchers have also reported the ben-

efits of using a perfused fed-batch or ‘concentrated fed-

batch’ process using an alternating tangential filter (ATF)

and an ultrafilter (UF) to retain both cells and the protein

of interest. Using this approach, significant improvements

in titers and productivity in different cell lines were
Current Opinion in Chemical Engineering 2018, 22:81–88
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achieved with a marginal change in certain product qual-

ity attributes without altering volumetric capacity [33].

With a view to demonstrating the feasibility of continuous

manufacturing units for the production of antibodies, Karst

et al. [34] developed an integratedperfusionandcontinuous

chromatography system wherein they were able to control

and fine-tune product quality for the antibody being pro-

duced. Additionally, media supplementation strategies and

predictive, mechanistic models to modulate the glycan

distribution profile in the antibody were implemented in

follow-up studies [35]. Other studies have examined the

role of perfusion in altering productivity and changing the

glycosylation profile. For example, when modes of opera-

tion were compared for an anti-CD52 mAb producing CHO

cell line, not only did perfusion culture increase productiv-

ity, but the antibody also had higher galactosylation and

sialylation levels compared to the product obtained from

fed batch process [36].

Steady-state operation has also been shown to have an

impact on charge variants with one study demonstrating

that growth in a perfusion bioreactor resulted in more

abundant neutral species and a decrease in acidic and

basic charge variants compared to the product from fed-

batch cultures [37�]. Interestingly, the authors noted that

both fed batch and perfusion cultures had relatively

similar glycan distributions indicating the role of media

supplements on influencing product quality even in per-

fusion systems.

Novel perfusion media development efforts from existing

fed-batch media have focused on using appropriately

balanced concentrations of media components, such as

vitamins, lipids, and amino acids, and on the systematic

elimination of redundant components [38]. It is important

to note that a thorough understanding of cell metabolism

can help redirect efforts towards media development and

enhance overall productivity while limiting growth when

using perfusion media. Further, the use of advanced

metabolomic tools should give a greater understanding

of the cellular changes under different operation modes,

providing tools for more efficient perfusion process design

[39,40].

Despite the advantages of perfusion culture for enhanc-

ing productivity, widespread implementation and com-

mercial usage has been limited for a variety of reasons.

Perfusion systems are operationally complex and require

additional unit operations such as cell retention and

harvest clarification to be performed on a near-continuous

basis. The associated cost of media increases depending

on the perfusion rate in the bioreactor; the economic

feasibility of perfusion operations thus has been the

subject of much research in recent years. Pollock

et al. [41] have compared different perfusion and fed-

batch scenarios for a typical mAb process from pre-clinical
Current Opinion in Chemical Engineering 2018, 22:81–88 
to commercial scale for small, medium, and large compa-

nies and demonstrated that continuous strategies provide

economic and environmental benefits, and have lower

risk at product development stages, but not at commercial

scales. Similar simulation-based studies by Bunnak

et al. [42] evaluated the environmental cost associated

with perfusion processes based on a life-cycle assessment,

where they demonstrated that the inefficiencies in per-

fusion processes do not stem from bioreactor operations

solely, but arise in large part from the downstream pro-

cesses associated with perfusion. Further, continuous

processes could be made as environmentally efficient

as fed-batch processes by altering pooling durations.

However, such analyses are product and process-depen-

dent, as was demonstrated in a recent publication by

Arnold et al. [43] who achieved an overall reduction of

15% to their cost of manufactured goods by performing

specific modifications to their continuous processing

operations, achieving nearly a 4.5-fold increase in volu-

metric productivity compared to their conventional 500 L

fed-batch operation.

With widespread implementation of single use and dis-

posable equipment, advancements in media develop-

ment, and improvements in cell harvest and protein

capture, perfusion processes are likely to become more

appealing in the biopharmaceutical industry in the future.

Conclusion
As the biopharmaceutical industry matures into an estab-

lished industry with ever higher titers being achieved at

commercial scales, an evolving concern among practi-

tioners is: what innovative strategies can be implemented

to yield maximal benefit for new and established pro-

cesses? Some researchers have expressed concern that in

the case of antibody production, novel technologies might

not yield the desired return on investment [44�]. In some

cases, applications to novel therapeutics such as antibody-

drug conjugates and other proteins have added complex-

ity, in part due to the lower yields and lack of a standard

process platform.

There continues to be a concerted effort to achieve the

dual objective of high productivity and consistent product

quality for all therapeutic products. In this review, we

have focused on different macroscale strategies that have

been implemented to achieve this objective, that is by (a)

modulating media formulation or using medium addi-

tives, (b) manipulating operating conditions, or (c) alter-

ing the mode of operation from fed-batch to continuous.

Advances in analytical technologies, development of

inline and online sensors, and increased process robust-

ness and control have resulted in an increasing adoption

of these macroscale strategies.

While evaluating each of these strategies, we recognize

that their success is incumbent upon the choice of the
www.sciencedirect.com
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appropriate cell line. As demonstrated in a recent study

[45] switching media or changing the mode of operation

did not alter the innate preferences that different CHO

cell lines displayed for protein or biomass synthesis. At

the outset of this review, macroscale and microscale

strategies were defined as complementary strategies

and we note that exploiting the true potential of macro-

scale strategies requires not only a fundamental under-

standing of the interplay between the variables at the

bioreactor and cellular scale, but also an in-depth under-

standing of the cell line-specific behavior. A holistic

approach that encompasses both microscale and macro-

scale variables will result in the design of a robust and

effective strategy to enhance productivity without

compromising quality.
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